Friday, June 17, 2016

New energy calculator in HPP-Design


A new HPP-Design feature is online: the Energy Calculator.

What can you do now?


It will be possible to calculate directly on line the production of an HPP.


We have reversed the concept of calculation: usually the flow of information, starting from a very thorough hydrogeological study, provides the calculation of a duration curve. Knowing the geodetic head and after some technical and economic considerations, we can define the turbine’s project data.


With HPP-Design, on the other hand, you can do the opposite: from the project data of the turbine, such as discharge and head, the tool will automatically set a hypothetical duration curve (you can choose between two pre-set curves) and then will calculate energy production if the hydroelectric plant has the chosen duration curve.

Simplifications introduced are:
  • Number of input points. We decided to use only 12 points identified as monthly averages;
  • Turbine efficiency is included (even with the flow variation), but not the generator’s and the transformer’s. At this stage efficiency of the generator and the transformer are equal to 1;
  • The head is constant.

You can also change the default values to define the flow duration curve fitting your HPP.

HPP-Design continues to implement new functions. Our goal is the study and development of new deployment to help designers and developers.

Need more information? You can follow us on Facebook, Twitter or send us an email.

Doubts or questions? Read our [FAQ]

Tuesday, June 14, 2016

Energy calculator in HPP-Design




E' online la nuova funzione di HPP-Design: Energy Calculator.
Cosa puoi fare ora?
Finalmente è possibile calcolare in maniera molto semplice la produzione di un impianto idroelettrico direttamente online
Abbiamo ribaltato il concetto di calcolo: solitamente il flusso di informazioni prevede, a valle di uno studio idrogeologico molto approfondito, il calcolo di una curva di durata. Noto il salto geodetico e dopo alcune considerazioni di tipo tecnico ed economico, si arriva alla definizione dei dati di progetto della turbina.

Con HPP-Design, invece, potrai fare il contrario: partendo dai dati di progetto della turbina, cioè salto e portata, il tool imposterà automaticamente una curva di durata ipotetica (è possibile scegliere fra due curve pre-impostate) e verrà calcolata la produzione di energia se l'impianto idroelettrico avesse la curva di durata proposta. 
Le semplificazioni introdotte sono:
  • Numero di punti inseriti. Abbiamo deciso di usare solo 12 punti identificati come le medie mensili. Un valore che normalmente si fa presto ad avere a disposizione;
  • E' compreso il rendimento della turbina al variare della portata e non quello del generatore e del trasformatore. Si considerano (in questa fase) rendimento del generatore e del trasformatore pari a 1;
  • Si considera (in questa fase) il salto costante. Non è compresa una variazione di salto.
Inoltre è possibile modificare i valori preimpostati andando a definire la propria curva di durata aderente all'impianto scelto.

HPP-Design è in continua crescita. Il nostro obiettivo è lo studio e lo sviluppo di nuove implementazione per aiutare i progettisti, gli sviluppatori e, in generale, gli operatori del settore.

Ti servono altre informazioni? Puoi seguirci su facebook oppure su twitter  scriverci una mail.

Hai dubbi o curiosità? Leggi le nostre [FAQ]

Tuesday, April 5, 2016

How to choose a hydroelectric turbine, a specific speed question!


The two main data needed to design a turbine are the maximum flow rate and the net head associated to this flow. However, these two values do not allow to uniquely define the type of turbine that must be designed; the designer is required to choose a third fundamental parameter: the number of revolutions.
Then it will be possible to define what we call the turbine specific speed.
But what is the specific speed? Leaving aside the theory about mechanical similarities, let's briefly explain what it is.

The specific speed of a turbine is defined as:


Where
    Q    maximum discharge     [m^3/s]
    H    net head  [m]
    g     gravity  (normal 9.806[m/s^2])
angular velocity of turbine [rad/s] calculated as:  




This parameter relates to each other the characteristic data of the turbine, and has the peculiarity of identifying families of geometrically similar machines (and then to scale them), having very different powers and sizes, but with one fundamental common characteristic: they are part of the only family of turbines that can process the available head and the discharge with the highest performance possible.
With simple calculations you can use the characteristic data of the turbine (H, Q and n) to find a value of specific speed  that uniquely identifies the most efficient type of turbine and its main dimensions. All this thanks to the experience gained in the design of more than a century of hydropower construction and excellent theoretical studies that have enabled the development of the theory of similarity at the basis of the specific speed calculations.
This does not mean that all turbines manufacturers build the same equipment once given the same typical number. After choosing the type of turbine and the main dimensions defined, each manufacturer has developed its own geometry and parameters that differentiate the turbines in terms of operation, reliability, cost and efficiency. Over the years, various design schools have proposed many definitions of the specific speed. The UNI-ISO has tried to standardize them into a single parameter, but in fact the definitions remain different.
In HPP-Design we use the parameter k, seen above, and nq



In the picture, every value of typical number of machine k (or nq) corresponds to a very specific type of turbine, exception made for some overlapping areas in which there is no univocal choice and the experience has shown that they can adapt well to different types of turbines (Pelton / Francis and Francis / Kaplan).

The question that arises is: how is this value really used?

Known the head and discharge, a preliminary study is made to define the appropriate number of revolution, taking into account some possible rotation speeds, and then calculating the relative specific speed which corresponds to a well-defined design solution. The possible solutions are then compared, in terms of performance, cavitation behaviour, main dimensions, etc.  and finally the choice is made for the solution that best suits the specific project. Once the rotation speed is fixed, starting from the specific speed it is possible to choose the type of turbine and start the detailed design.

Hpp-design is the tool that helps the designer to make a preliminary choice by comparing these elements directly into the chosen page. Try it out!

For information contact us here or send us an email here, you can also read the FAQs. Hpp-design is constantly updating and I recommend you to register to our newsletter here to keep up to date on new releases.